Chiral resolution at the solid state

BCA IG/YCG Autumn Meeting - Thursday 5th November

Ludovic Renou, Baptiste Fours, Thierry Bonnaud
Pharmorphix® Solid State Services
email: ludovic.renou@sial.com
Introduction

Definition of chirality

The two objects are symmetrical about a mirror plane

The two objects form a pair of enantiomers
Cases of API with one chiral center

Example of Modafinil:

- Modafinil: psychostimulant used in the treatment of narcolepsy
- Enhancement of vigilance cognitive performance
- In 2003 at athletics world championship in France: Kelli White tested positive for Modafinil
- Developed by Cephalon, Inc.: Provigil® (racemate) Nuvegil® (enantiopure)
Synthesis at the industrial scale:

The patented synthesis leads to a racemate containing 50% of each enantiomer.

French Patent 2385693 (1978)

Objective:
To obtain Modafinil as a single enantiomer by crystallization.
Chirality in the case of sulfoxides

S enantiomer

R enantiomer

Mirror plan

Sulphur atom is the stereogenic center

Strategies for chiral resolution

Modafinil is a very weak acid

1. Partial discrimination of S and R enantiomers at the solid state:
 - **Solid solution**
 - **Mixed crystals**

 For racemic compounds crystal structure only non-centrosymmetric space groups should be allowed.

2. Complete discrimination of S and R enantiomers at the solid state:
 - **Racemic conglomerate**

 For racemic conglomerate crystal structure only non-centrosymmetric space groups should be allowed (chiral crystal structure)

Flack, Helvetica Chemica Acta, 86 (2003) 905-921
Racemic conglomerate

Polymorphism is known for this compound

Calculated pKa 2.8

Can be separated by preferential crystallisation (kinetic). The formation of salt with non-chiral base was made to enhance the process efficiency

Strategies for chiral resolution

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reference</th>
</tr>
</thead>
</table>

Calculated pKa 2.8

Can be separated formation of diastereomers (thermodynamic) with α-MBA

Solid solution
Mixed crystals

This case is fully described in this talk

Racemic conglomerate

Chiral resolution possible out of equilibrium by seeding.

Solvate formation or cocrystal formation can also be advantageous

Crystal Growth & Design, 7(9) (2007) 1599

CrystEngComm, 10, 724 - 733 (2008)

© 2009 Sigma-Aldrich Co. All rights reserved.
Characterisation of a partial solid solution

XRPD:

R(-)DMSAM

(±)DMSAM
Single crystal X-ray diffraction

Confirmation of the molecular structure

R(-)DMSAM

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>(\text{C}{16}\text{H}{16}\text{SO}_{3})</td>
</tr>
<tr>
<td>Space group</td>
<td>(\text{P2}_1\text{2}_1\text{2}_1)</td>
</tr>
<tr>
<td>a / Å</td>
<td>5.693(1)</td>
</tr>
<tr>
<td>b / Å</td>
<td>16.139(2)</td>
</tr>
<tr>
<td>c / Å</td>
<td>16.131(2)</td>
</tr>
<tr>
<td>(\alpha = \beta = \gamma \ / ^\circ)</td>
<td>90.00</td>
</tr>
<tr>
<td>V / Å^3</td>
<td>1482(1)</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>-0.02(6)</td>
</tr>
</tbody>
</table>

Confirmation of the chirality of the molecule
Single crystal X-ray diffraction

Obtained by evaporation of an ethanolic solution of (±)DMSAM

<table>
<thead>
<tr>
<th>Formula</th>
<th>C_{16}H_{16}SO_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Group</td>
<td>P2_{1}2_{1}2_{1} (P2_{1}2_{1}2_{1})</td>
</tr>
<tr>
<td>a / Å</td>
<td>5.711(1) (5.693(1))</td>
</tr>
<tr>
<td>b / Å</td>
<td>15.989(2) (16.139(2))</td>
</tr>
<tr>
<td>c / Å</td>
<td>16.101(2) (16.131(2))</td>
</tr>
<tr>
<td>α = β = γ /°</td>
<td>90.00 (90.00)</td>
</tr>
<tr>
<td>V / Å³</td>
<td>1470(1) (1482(1))</td>
</tr>
</tbody>
</table>

Flack parameter 0.10(10)

Volume of the unit cell decreases

Presence of R and S enantiomers in the structure
Characterisation of a partial solid solution

<table>
<thead>
<tr>
<th>Composition of solutions</th>
<th>ee = 0% (±)DMSAM</th>
<th>ee = 100% R(-)DMSAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P2₁2₁2₁</td>
<td></td>
</tr>
<tr>
<td>a / Å</td>
<td>5.711(1)</td>
<td>5.693(1)</td>
</tr>
<tr>
<td>b / Å</td>
<td>15.989(2)</td>
<td>16.139(2)</td>
</tr>
<tr>
<td>c / Å</td>
<td>16.101(2)</td>
<td>16.131(2)</td>
</tr>
<tr>
<td>V / Å³</td>
<td>1470(1)</td>
<td>1482(1)</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.10(10)</td>
<td>-0.02(6)</td>
</tr>
<tr>
<td>Composition of single crystals using structure refinement</td>
<td>ee = 50(±1)%</td>
<td>ee = 100%</td>
</tr>
<tr>
<td>Composition of single crystals using HPLC</td>
<td>ee = 52(±1)%</td>
<td>ee = 98(±1)%</td>
</tr>
</tbody>
</table>

Enantiomeric excess: \(e.e. = \frac{\%R - \%S}{\%R + \%S} \)

(±)DMSAM is made of single particle \%R/%S ≈ 75/25 and 25/75
Preferential crystallization

Application of AS3PC process

AS3PC (Auto Seeded Programmed Polythermic Preferential Crystallization)

Initial conditions

\[
\begin{align*}
(\pm)\text{DMSAM}: & \ 5.33 \ g \\
R(-)\text{DMSAM}: & \ 0.53 \ g \\
\text{Methanol}: & \ 16.08 \ g \\
\text{initial e.e.} & \ = \ 9\%
\end{align*}
\]

\[
\text{Thomo} = 26.5^\circ \text{C}, \text{ complete dissolution of the solute}
\]

\[
\text{TB} = (\text{Thomo} + \text{TL})/2 = 23.5^\circ \text{C}, \text{ starting temperature of the process}
\]

\[
\text{TL} = 20.5^\circ \text{C}, \text{ complete dissolution of } (\pm)\text{DMSAM in the same quantity of solvent}
\]

32 minutes

\[
\text{Tf} = 13^\circ \text{C}, \text{ temperature of filtration at the end of the crystallization}
\]

Crop: 1.198 g of crystals e.e. \(\approx 50\%\) (polarimetry)
Mother liquor weakly enriched in \(<(+)>\) e.e. \(\approx 2\%\) (polarimetry)

Poor efficiency of preferential crystallization

Explanation of the poor efficiency of preferential crystallization

Experimental ternary phase diagram at 20° C

System:
S(+)/R(-)DMSAM/MeOH

Domains of solid solution at 20° C ee [100%-52%]

Solid solution stable at the thermodynamic equilibrium

Study of the enantiomer distribution in mixed crystals

RAMAN microscopy

Analyses of single crystals of solid solution (ee 100-50%)

- Partial differentiation between single crystals of solid solution

From a thousand µm³ to 1 µm³ [5]

- At this scale (2×10^9 molecules) R and S enantiomers are homogeneously distributed in the crystals
Study of the enantiomer distribution in mixed crystals

X-ray $h0l$ zone image

Plane $h0l$

single crystal ee50%

No segregation of R and S enantiomers has been detected in single crystal of solid solution
Partial and preferential dissolution of mixed crystals

- At 20°C, in a thermostated vial:

Single crystals of solid solution (ee 52%) were immersed in a large excess of saturated solution of R enantiomer in ethanol

After 1 hour, S rich single crystal completely dissolved

After 2 hours, R rich single crystal was partially dissolved

Quasi-ideal behavior which follows Meyerhoffer “double solubility rule” in EtOH
Conclusions

Chiral molecules at the solid state with one (or more) stereogenic centre can crystallise as:

- Racemic compounds (most common case), chiral resolution can not be made at the solid state at the thermodynamic equilibrium.
 - Polymorph/solvate screening, chiral and non-chiral salt screening needs to be performed depending on the pKa of the molecule
- Racemic conglomerates (less common). This case is the most suitable for chiral resolution via preferential crystallisation or salt formation.
- Solid solution (less common). This case may imply a poor efficiency of the chiral resolution. The non-desired enantiomer “pollutes” the crystal of the desired enantiomer even if the form is metastable.
 - A solid solution can be difficult to detect in the following cases:
 - metastable form
 - its stability domain is small
 - the counter-enantiomer does not affect the lattice parameter (no difference can be seen by XRPD)
Acknowledgements

• Cephalon Inc. (West Chester, PA, U.S.A & Mitry-Mory, France) for their collaboration
• Prof. Gerard Coquerel head of the Laboratory for Sciences et Méthodes Séparatives at University of Rouen
• Baptiste Fours, Thierry Bonnaud (Pharmorphix)